[BACK]Return to xcrypt.c CVS log [TXT][DIR] Up to [contributed] / early-roguelike / xrogue

Annotation of early-roguelike/xrogue/xcrypt.c, Revision 1.1.1.1

1.1       rubenllo    1: /*
                      2:  * FreeSec: libcrypt
                      3:  *
                      4:  * Copyright (C) 1994 David Burren
                      5:  * All rights reserved.
                      6:  *
                      7:  * Redistribution and use in source and binary forms, with or without
                      8:  * modification, are permitted provided that the following conditions
                      9:  * are met:
                     10:  * 1. Redistributions of source code must retain the above copyright
                     11:  *    notice, this list of conditions and the following disclaimer.
                     12:  * 2. Redistributions in binary form must reproduce the above copyright
                     13:  *    notice, this list of conditions and the following disclaimer in the
                     14:  *    documentation and/or other materials provided with the distribution.
                     15:  * 3. Neither the name(s) of the author(s) nor the names of other contributors
                     16:  *    may be used to endorse or promote products derived from this software
                     17:  *    without specific prior written permission.
                     18:  *
                     19:  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS ``AS IS'' AND
                     20:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
                     21:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
                     22:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTORS BE LIABLE
                     23:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
                     24:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
                     25:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
                     26:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
                     27:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
                     28:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
                     29:  * SUCH DAMAGE.
                     30:  *
                     31:  *
                     32:  * This is an original implementation of the DES and the crypt(3) interfaces
                     33:  * by David Burren <davidb@werj.com.au>.
                     34:  *
                     35:  * An excellent reference on the underlying algorithm (and related
                     36:  * algorithms) is:
                     37:  *
                     38:  *  B. Schneier, Applied Cryptography: protocols, algorithms,
                     39:  *  and source code in C, John Wiley & Sons, 1994.
                     40:  *
                     41:  * Note that in that book's description of DES the lookups for the initial,
                     42:  * pbox, and final permutations are inverted (this has been brought to the
                     43:  * attention of the author).  A list of errata for this book has been
                     44:  * posted to the sci.crypt newsgroup by the author and is available for FTP.
                     45:  *
                     46:  * NOTE:
                     47:  * This file has a static version of des_setkey() so that crypt.o exports
                     48:  * only the crypt() interface. This is required to make binaries linked
                     49:  * against crypt.o exportable or re-exportable from the USA.
                     50:  */
                     51:
                     52: #include <sys/types.h>
                     53: #include <string.h>
                     54:
                     55: #define _PASSWORD_EFMT1 '_'
                     56:
                     57: unsigned long int md_htonl(unsigned long int x);
                     58: unsigned long int md_ntohl(unsigned long int x);
                     59:
                     60: static unsigned char    IP[64] = {
                     61:     58, 50, 42, 34, 26, 18, 10,  2, 60, 52, 44, 36, 28, 20, 12,  4,
                     62:     62, 54, 46, 38, 30, 22, 14,  6, 64, 56, 48, 40, 32, 24, 16,  8,
                     63:     57, 49, 41, 33, 25, 17,  9,  1, 59, 51, 43, 35, 27, 19, 11,  3,
                     64:     61, 53, 45, 37, 29, 21, 13,  5, 63, 55, 47, 39, 31, 23, 15,  7
                     65: };
                     66:
                     67: static unsigned char    inv_key_perm[64];
                     68: static unsigned char    key_perm[56] = {
                     69:     57, 49, 41, 33, 25, 17,  9,  1, 58, 50, 42, 34, 26, 18,
                     70:     10,  2, 59, 51, 43, 35, 27, 19, 11,  3, 60, 52, 44, 36,
                     71:     63, 55, 47, 39, 31, 23, 15,  7, 62, 54, 46, 38, 30, 22,
                     72:     14,  6, 61, 53, 45, 37, 29, 21, 13,  5, 28, 20, 12,  4
                     73: };
                     74:
                     75: static unsigned char    key_shifts[16] = {
                     76:     1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
                     77: };
                     78:
                     79: static unsigned char    inv_comp_perm[56];
                     80: static unsigned char    comp_perm[48] = {
                     81:     14, 17, 11, 24,  1,  5,  3, 28, 15,  6, 21, 10,
                     82:     23, 19, 12,  4, 26,  8, 16,  7, 27, 20, 13,  2,
                     83:     41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
                     84:     44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
                     85: };
                     86:
                     87: /*
                     88:  *  No E box is used, as it's replaced by some ANDs, shifts, and ORs.
                     89:  */
                     90:
                     91: static unsigned char    u_sbox[8][64];
                     92: static unsigned char    sbox[8][64] = {
                     93:     {
                     94:         14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
                     95:          0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
                     96:          4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
                     97:         15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13
                     98:     },
                     99:     {
                    100:         15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
                    101:          3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
                    102:          0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
                    103:         13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9
                    104:     },
                    105:     {
                    106:         10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
                    107:         13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
                    108:         13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
                    109:          1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12
                    110:     },
                    111:     {
                    112:          7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
                    113:         13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
                    114:         10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
                    115:          3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14
                    116:     },
                    117:     {
                    118:          2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
                    119:         14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
                    120:          4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
                    121:         11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3
                    122:     },
                    123:     {
                    124:         12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
                    125:         10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
                    126:          9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
                    127:          4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13
                    128:     },
                    129:     {
                    130:          4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
                    131:         13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
                    132:          1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
                    133:          6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12
                    134:     },
                    135:     {
                    136:         13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
                    137:          1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
                    138:          7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
                    139:          2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11
                    140:     }
                    141: };
                    142:
                    143: static unsigned char    un_pbox[32];
                    144: static unsigned char    pbox[32] = {
                    145:     16,  7, 20, 21, 29, 12, 28, 17,  1, 15, 23, 26,  5, 18, 31, 10,
                    146:      2,  8, 24, 14, 32, 27,  3,  9, 19, 13, 30,  6, 22, 11,  4, 25
                    147: };
                    148:
                    149: static unsigned int bits32[32] =
                    150: {
                    151:     0x80000000, 0x40000000, 0x20000000, 0x10000000,
                    152:     0x08000000, 0x04000000, 0x02000000, 0x01000000,
                    153:     0x00800000, 0x00400000, 0x00200000, 0x00100000,
                    154:     0x00080000, 0x00040000, 0x00020000, 0x00010000,
                    155:     0x00008000, 0x00004000, 0x00002000, 0x00001000,
                    156:     0x00000800, 0x00000400, 0x00000200, 0x00000100,
                    157:     0x00000080, 0x00000040, 0x00000020, 0x00000010,
                    158:     0x00000008, 0x00000004, 0x00000002, 0x00000001
                    159: };
                    160:
                    161: static unsigned char    bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
                    162:
                    163: static unsigned int saltbits;
                    164: static int  old_salt;
                    165: static unsigned int *bits28, *bits24;
                    166: static unsigned char    init_perm[64], final_perm[64];
                    167: static unsigned int en_keysl[16], en_keysr[16];
                    168: static unsigned int de_keysl[16], de_keysr[16];
                    169: static int  des_initialised = 0;
                    170: static unsigned char    m_sbox[4][4096];
                    171: static unsigned int psbox[4][256];
                    172: static unsigned int ip_maskl[8][256], ip_maskr[8][256];
                    173: static unsigned int fp_maskl[8][256], fp_maskr[8][256];
                    174: static unsigned int key_perm_maskl[8][128], key_perm_maskr[8][128];
                    175: static unsigned int comp_maskl[8][128], comp_maskr[8][128];
                    176: static unsigned int old_rawkey0, old_rawkey1;
                    177:
                    178: static unsigned char    ascii64[] =
                    179:      "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
                    180: /*    0000000000111111111122222222223333333333444444444455555555556666 */
                    181: /*    0123456789012345678901234567890123456789012345678901234567890123 */
                    182:
                    183: static __inline int
                    184: ascii_to_bin(ch)
                    185:     char ch;
                    186: {
                    187:     if (ch > 'z')
                    188:         return(0);
                    189:     if (ch >= 'a')
                    190:         return(ch - 'a' + 38);
                    191:     if (ch > 'Z')
                    192:         return(0);
                    193:     if (ch >= 'A')
                    194:         return(ch - 'A' + 12);
                    195:     if (ch > '9')
                    196:         return(0);
                    197:     if (ch >= '.')
                    198:         return(ch - '.');
                    199:     return(0);
                    200: }
                    201:
                    202: static void
                    203: des_init()
                    204: {
                    205:     int i, j, b, k, inbit, obit;
                    206:     unsigned int    *p, *il, *ir, *fl, *fr;
                    207:
                    208:     old_rawkey0 = old_rawkey1 = 0;
                    209:     saltbits = 0;
                    210:     old_salt = 0;
                    211:     bits24 = (bits28 = bits32 + 4) + 4;
                    212:
                    213:     /*
                    214:      * Invert the S-boxes, reordering the input bits.
                    215:      */
                    216:     for (i = 0; i < 8; i++)
                    217:         for (j = 0; j < 64; j++) {
                    218:             b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
                    219:             u_sbox[i][j] = sbox[i][b];
                    220:         }
                    221:
                    222:     /*
                    223:      * Convert the inverted S-boxes into 4 arrays of 8 bits.
                    224:      * Each will handle 12 bits of the S-box input.
                    225:      */
                    226:     for (b = 0; b < 4; b++)
                    227:         for (i = 0; i < 64; i++)
                    228:             for (j = 0; j < 64; j++)
                    229:                 m_sbox[b][(i << 6) | j] =
                    230:                     (u_sbox[(b << 1)][i] << 4) |
                    231:                     u_sbox[(b << 1) + 1][j];
                    232:
                    233:     /*
                    234:      * Set up the initial & final permutations into a useful form, and
                    235:      * initialise the inverted key permutation.
                    236:      */
                    237:     for (i = 0; i < 64; i++) {
                    238:         init_perm[final_perm[i] = IP[i] - 1] = i;
                    239:         inv_key_perm[i] = 255;
                    240:     }
                    241:
                    242:     /*
                    243:      * Invert the key permutation and initialise the inverted key
                    244:      * compression permutation.
                    245:      */
                    246:     for (i = 0; i < 56; i++) {
                    247:         inv_key_perm[key_perm[i] - 1] = i;
                    248:         inv_comp_perm[i] = 255;
                    249:     }
                    250:
                    251:     /*
                    252:      * Invert the key compression permutation.
                    253:      */
                    254:     for (i = 0; i < 48; i++) {
                    255:         inv_comp_perm[comp_perm[i] - 1] = i;
                    256:     }
                    257:
                    258:     /*
                    259:      * Set up the OR-mask arrays for the initial and final permutations,
                    260:      * and for the key initial and compression permutations.
                    261:      */
                    262:     for (k = 0; k < 8; k++) {
                    263:         for (i = 0; i < 256; i++) {
                    264:             *(il = &ip_maskl[k][i]) = 0;
                    265:             *(ir = &ip_maskr[k][i]) = 0;
                    266:             *(fl = &fp_maskl[k][i]) = 0;
                    267:             *(fr = &fp_maskr[k][i]) = 0;
                    268:             for (j = 0; j < 8; j++) {
                    269:                 inbit = 8 * k + j;
                    270:                 if (i & bits8[j]) {
                    271:                     if ((obit = init_perm[inbit]) < 32)
                    272:                         *il |= bits32[obit];
                    273:                     else
                    274:                         *ir |= bits32[obit-32];
                    275:                     if ((obit = final_perm[inbit]) < 32)
                    276:                         *fl |= bits32[obit];
                    277:                     else
                    278:                         *fr |= bits32[obit - 32];
                    279:                 }
                    280:             }
                    281:         }
                    282:         for (i = 0; i < 128; i++) {
                    283:             *(il = &key_perm_maskl[k][i]) = 0;
                    284:             *(ir = &key_perm_maskr[k][i]) = 0;
                    285:             for (j = 0; j < 7; j++) {
                    286:                 inbit = 8 * k + j;
                    287:                 if (i & bits8[j + 1]) {
                    288:                     if ((obit = inv_key_perm[inbit]) == 255)
                    289:                         continue;
                    290:                     if (obit < 28)
                    291:                         *il |= bits28[obit];
                    292:                     else
                    293:                         *ir |= bits28[obit - 28];
                    294:                 }
                    295:             }
                    296:             *(il = &comp_maskl[k][i]) = 0;
                    297:             *(ir = &comp_maskr[k][i]) = 0;
                    298:             for (j = 0; j < 7; j++) {
                    299:                 inbit = 7 * k + j;
                    300:                 if (i & bits8[j + 1]) {
                    301:                     if ((obit=inv_comp_perm[inbit]) == 255)
                    302:                         continue;
                    303:                     if (obit < 24)
                    304:                         *il |= bits24[obit];
                    305:                     else
                    306:                         *ir |= bits24[obit - 24];
                    307:                 }
                    308:             }
                    309:         }
                    310:     }
                    311:
                    312:     /*
                    313:      * Invert the P-box permutation, and convert into OR-masks for
                    314:      * handling the output of the S-box arrays setup above.
                    315:      */
                    316:     for (i = 0; i < 32; i++)
                    317:         un_pbox[pbox[i] - 1] = i;
                    318:
                    319:     for (b = 0; b < 4; b++)
                    320:         for (i = 0; i < 256; i++) {
                    321:             *(p = &psbox[b][i]) = 0;
                    322:             for (j = 0; j < 8; j++) {
                    323:                 if (i & bits8[j])
                    324:                     *p |= bits32[un_pbox[8 * b + j]];
                    325:             }
                    326:         }
                    327:
                    328:     des_initialised = 1;
                    329: }
                    330:
                    331: static void
                    332: setup_salt(salt)
                    333:     int salt;
                    334: {
                    335:     unsigned int    obit, saltbit;
                    336:     int i;
                    337:
                    338:     if (salt == old_salt)
                    339:         return;
                    340:     old_salt = salt;
                    341:
                    342:     saltbits = 0;
                    343:     saltbit = 1;
                    344:     obit = 0x800000;
                    345:     for (i = 0; i < 24; i++) {
                    346:         if (salt & saltbit)
                    347:             saltbits |= obit;
                    348:         saltbit <<= 1;
                    349:         obit >>= 1;
                    350:     }
                    351: }
                    352:
                    353: static int
                    354: des_setkey(key)
                    355:     const char *key;
                    356: {
                    357:     unsigned int k0, k1, rawkey0, rawkey1;
                    358:     int shifts, round;
                    359:
                    360:     if (!des_initialised)
                    361:         des_init();
                    362:
                    363:     rawkey0 = md_ntohl(*(unsigned int *) key);
                    364:     rawkey1 = md_ntohl(*(unsigned int *) (key + 4));
                    365:
                    366:     if ((rawkey0 | rawkey1)
                    367:         && rawkey0 == old_rawkey0
                    368:         && rawkey1 == old_rawkey1) {
                    369:         /*
                    370:          * Already setup for this key.
                    371:          * This optimisation fails on a zero key (which is weak and
                    372:          * has bad parity anyway) in order to simplify the starting
                    373:          * conditions.
                    374:          */
                    375:         return(0);
                    376:     }
                    377:     old_rawkey0 = rawkey0;
                    378:     old_rawkey1 = rawkey1;
                    379:
                    380:     /*
                    381:      *  Do key permutation and split into two 28-bit subkeys.
                    382:      */
                    383:     k0 = key_perm_maskl[0][rawkey0 >> 25]
                    384:        | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
                    385:        | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
                    386:        | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
                    387:        | key_perm_maskl[4][rawkey1 >> 25]
                    388:        | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
                    389:        | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
                    390:        | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
                    391:     k1 = key_perm_maskr[0][rawkey0 >> 25]
                    392:        | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
                    393:        | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
                    394:        | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
                    395:        | key_perm_maskr[4][rawkey1 >> 25]
                    396:        | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
                    397:        | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
                    398:        | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
                    399:     /*
                    400:      *  Rotate subkeys and do compression permutation.
                    401:      */
                    402:     shifts = 0;
                    403:     for (round = 0; round < 16; round++) {
                    404:         unsigned int    t0, t1;
                    405:
                    406:         shifts += key_shifts[round];
                    407:
                    408:         t0 = (k0 << shifts) | (k0 >> (28 - shifts));
                    409:         t1 = (k1 << shifts) | (k1 >> (28 - shifts));
                    410:
                    411:         de_keysl[15 - round] =
                    412:         en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
                    413:                 | comp_maskl[1][(t0 >> 14) & 0x7f]
                    414:                 | comp_maskl[2][(t0 >> 7) & 0x7f]
                    415:                 | comp_maskl[3][t0 & 0x7f]
                    416:                 | comp_maskl[4][(t1 >> 21) & 0x7f]
                    417:                 | comp_maskl[5][(t1 >> 14) & 0x7f]
                    418:                 | comp_maskl[6][(t1 >> 7) & 0x7f]
                    419:                 | comp_maskl[7][t1 & 0x7f];
                    420:
                    421:         de_keysr[15 - round] =
                    422:         en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
                    423:                 | comp_maskr[1][(t0 >> 14) & 0x7f]
                    424:                 | comp_maskr[2][(t0 >> 7) & 0x7f]
                    425:                 | comp_maskr[3][t0 & 0x7f]
                    426:                 | comp_maskr[4][(t1 >> 21) & 0x7f]
                    427:                 | comp_maskr[5][(t1 >> 14) & 0x7f]
                    428:                 | comp_maskr[6][(t1 >> 7) & 0x7f]
                    429:                 | comp_maskr[7][t1 & 0x7f];
                    430:     }
                    431:     return(0);
                    432: }
                    433:
                    434: static int
                    435: do_des(l_in, r_in, l_out, r_out, count)
                    436:     unsigned int l_in, r_in, *l_out, *r_out;
                    437:     int count;
                    438: {
                    439:     /*
                    440:      *  l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
                    441:      */
                    442:     unsigned int    l, r, *kl, *kr, *kl1, *kr1;
                    443:     unsigned int    f = 0, r48l, r48r;
                    444:     int     round;
                    445:
                    446:     if (count == 0) {
                    447:         return(1);
                    448:     } else if (count > 0) {
                    449:         /*
                    450:          * Encrypting
                    451:          */
                    452:         kl1 = en_keysl;
                    453:         kr1 = en_keysr;
                    454:     } else {
                    455:         /*
                    456:          * Decrypting
                    457:          */
                    458:         count = -count;
                    459:         kl1 = de_keysl;
                    460:         kr1 = de_keysr;
                    461:     }
                    462:
                    463:     /*
                    464:      *  Do initial permutation (IP).
                    465:      */
                    466:     l = ip_maskl[0][l_in >> 24]
                    467:       | ip_maskl[1][(l_in >> 16) & 0xff]
                    468:       | ip_maskl[2][(l_in >> 8) & 0xff]
                    469:       | ip_maskl[3][l_in & 0xff]
                    470:       | ip_maskl[4][r_in >> 24]
                    471:       | ip_maskl[5][(r_in >> 16) & 0xff]
                    472:       | ip_maskl[6][(r_in >> 8) & 0xff]
                    473:       | ip_maskl[7][r_in & 0xff];
                    474:     r = ip_maskr[0][l_in >> 24]
                    475:       | ip_maskr[1][(l_in >> 16) & 0xff]
                    476:       | ip_maskr[2][(l_in >> 8) & 0xff]
                    477:       | ip_maskr[3][l_in & 0xff]
                    478:       | ip_maskr[4][r_in >> 24]
                    479:       | ip_maskr[5][(r_in >> 16) & 0xff]
                    480:       | ip_maskr[6][(r_in >> 8) & 0xff]
                    481:       | ip_maskr[7][r_in & 0xff];
                    482:
                    483:     while (count--) {
                    484:         /*
                    485:          * Do each round.
                    486:          */
                    487:         kl = kl1;
                    488:         kr = kr1;
                    489:         round = 16;
                    490:         while (round--) {
                    491:             /*
                    492:              * Expand R to 48 bits (simulate the E-box).
                    493:              */
                    494:             r48l    = ((r & 0x00000001) << 23)
                    495:                 | ((r & 0xf8000000) >> 9)
                    496:                 | ((r & 0x1f800000) >> 11)
                    497:                 | ((r & 0x01f80000) >> 13)
                    498:                 | ((r & 0x001f8000) >> 15);
                    499:
                    500:             r48r    = ((r & 0x0001f800) << 7)
                    501:                 | ((r & 0x00001f80) << 5)
                    502:                 | ((r & 0x000001f8) << 3)
                    503:                 | ((r & 0x0000001f) << 1)
                    504:                 | ((r & 0x80000000) >> 31);
                    505:             /*
                    506:              * Do salting for crypt() and friends, and
                    507:              * XOR with the permuted key.
                    508:              */
                    509:             f = (r48l ^ r48r) & saltbits;
                    510:             r48l ^= f ^ *kl++;
                    511:             r48r ^= f ^ *kr++;
                    512:             /*
                    513:              * Do sbox lookups (which shrink it back to 32 bits)
                    514:              * and do the pbox permutation at the same time.
                    515:              */
                    516:             f = psbox[0][m_sbox[0][r48l >> 12]]
                    517:               | psbox[1][m_sbox[1][r48l & 0xfff]]
                    518:               | psbox[2][m_sbox[2][r48r >> 12]]
                    519:               | psbox[3][m_sbox[3][r48r & 0xfff]];
                    520:             /*
                    521:              * Now that we've permuted things, complete f().
                    522:              */
                    523:             f ^= l;
                    524:             l = r;
                    525:             r = f;
                    526:         }
                    527:         r = l;
                    528:         l = f;
                    529:     }
                    530:     /*
                    531:      * Do final permutation (inverse of IP).
                    532:      */
                    533:     *l_out  = fp_maskl[0][l >> 24]
                    534:         | fp_maskl[1][(l >> 16) & 0xff]
                    535:         | fp_maskl[2][(l >> 8) & 0xff]
                    536:         | fp_maskl[3][l & 0xff]
                    537:         | fp_maskl[4][r >> 24]
                    538:         | fp_maskl[5][(r >> 16) & 0xff]
                    539:         | fp_maskl[6][(r >> 8) & 0xff]
                    540:         | fp_maskl[7][r & 0xff];
                    541:     *r_out  = fp_maskr[0][l >> 24]
                    542:         | fp_maskr[1][(l >> 16) & 0xff]
                    543:         | fp_maskr[2][(l >> 8) & 0xff]
                    544:         | fp_maskr[3][l & 0xff]
                    545:         | fp_maskr[4][r >> 24]
                    546:         | fp_maskr[5][(r >> 16) & 0xff]
                    547:         | fp_maskr[6][(r >> 8) & 0xff]
                    548:         | fp_maskr[7][r & 0xff];
                    549:     return(0);
                    550: }
                    551:
                    552: static int
                    553: des_cipher(in, out, salt, count)
                    554:     const char *in;
                    555:     char *out;
                    556:     int salt;
                    557:     int count;
                    558: {
                    559:     unsigned int l_out, r_out, rawl, rawr;
                    560:     unsigned int x[2];
                    561:     int retval;
                    562:
                    563:     if (!des_initialised)
                    564:         des_init();
                    565:
                    566:     setup_salt(salt);
                    567:
                    568:     memcpy(x, in, sizeof x);
                    569:     rawl = md_ntohl(x[0]);
                    570:     rawr = md_ntohl(x[1]);
                    571:     retval = do_des(rawl, rawr, &l_out, &r_out, count);
                    572:
                    573:     x[0] = md_htonl(l_out);
                    574:     x[1] = md_htonl(r_out);
                    575:     memcpy(out, x, sizeof x);
                    576:     return(retval);
                    577: }
                    578:
                    579: char *
                    580: xcrypt(key, setting)
                    581:     const char *key;
                    582:     const char *setting;
                    583: {
                    584:     int     i;
                    585:     unsigned int    count, salt, l, r0, r1, keybuf[2];
                    586:     unsigned char       *p, *q;
                    587:     static unsigned char    output[21];
                    588:
                    589:     if (!des_initialised)
                    590:         des_init();
                    591:
                    592:     /*
                    593:      * Copy the key, shifting each character up by one bit
                    594:      * and padding with zeros.
                    595:      */
                    596:     q = (unsigned char *) keybuf;
                    597:     while ((q - (unsigned char *) keybuf) < sizeof(keybuf)) {
                    598:         if ((*q++ = *key << 1))
                    599:             key++;
                    600:     }
                    601:     if (des_setkey((unsigned char *) keybuf))
                    602:         return(NULL);
                    603:
                    604:     if (*setting == _PASSWORD_EFMT1) {
                    605:         /*
                    606:          * "new"-style:
                    607:          *  setting - underscore, 4 bytes of count, 4 bytes of salt
                    608:          *  key - unlimited characters
                    609:          */
                    610:         for (i = 1, count = 0; i < 5; i++)
                    611:             count |= ascii_to_bin(setting[i]) << (i - 1) * 6;
                    612:
                    613:         for (i = 5, salt = 0; i < 9; i++)
                    614:             salt |= ascii_to_bin(setting[i]) << (i - 5) * 6;
                    615:
                    616:         while (*key) {
                    617:             /*
                    618:              * Encrypt the key with itself.
                    619:              */
                    620:             if (des_cipher((unsigned char*)keybuf, (unsigned char*)keybuf, 0, 1))
                    621:                 return(NULL);
                    622:             /*
                    623:              * And XOR with the next 8 characters of the key.
                    624:              */
                    625:             q = (unsigned char *) keybuf;
                    626:             while (((q - (unsigned char *) keybuf) < sizeof(keybuf)) &&
                    627:                     *key)
                    628:                 *q++ ^= *key++ << 1;
                    629:
                    630:             if (des_setkey((unsigned char *) keybuf))
                    631:                 return(NULL);
                    632:         }
                    633:         strncpy((char *)output, setting, 9);
                    634:
                    635:         /*
                    636:          * Double check that we weren't given a short setting.
                    637:          * If we were, the above code will probably have created
                    638:          * wierd values for count and salt, but we don't really care.
                    639:          * Just make sure the output string doesn't have an extra
                    640:          * NUL in it.
                    641:          */
                    642:         output[9] = '\0';
                    643:         p = output + strlen((const char *)output);
                    644:     } else {
                    645:         /*
                    646:          * "old"-style:
                    647:          *  setting - 2 bytes of salt
                    648:          *  key - up to 8 characters
                    649:          */
                    650:         count = 25;
                    651:
                    652:         salt = (ascii_to_bin(setting[1]) << 6)
                    653:              |  ascii_to_bin(setting[0]);
                    654:
                    655:         output[0] = setting[0];
                    656:         /*
                    657:          * If the encrypted password that the salt was extracted from
                    658:          * is only 1 character long, the salt will be corrupted.  We
                    659:          * need to ensure that the output string doesn't have an extra
                    660:          * NUL in it!
                    661:          */
                    662:         output[1] = setting[1] ? setting[1] : output[0];
                    663:
                    664:         p = output + 2;
                    665:     }
                    666:     setup_salt(salt);
                    667:     /*
                    668:      * Do it.
                    669:      */
                    670:     if (do_des(0, 0, &r0, &r1, count))
                    671:         return(NULL);
                    672:     /*
                    673:      * Now encode the result...
                    674:      */
                    675:     l = (r0 >> 8);
                    676:     *p++ = ascii64[(l >> 18) & 0x3f];
                    677:     *p++ = ascii64[(l >> 12) & 0x3f];
                    678:     *p++ = ascii64[(l >> 6) & 0x3f];
                    679:     *p++ = ascii64[l & 0x3f];
                    680:
                    681:     l = (r0 << 16) | ((r1 >> 16) & 0xffff);
                    682:     *p++ = ascii64[(l >> 18) & 0x3f];
                    683:     *p++ = ascii64[(l >> 12) & 0x3f];
                    684:     *p++ = ascii64[(l >> 6) & 0x3f];
                    685:     *p++ = ascii64[l & 0x3f];
                    686:
                    687:     l = r1 << 2;
                    688:     *p++ = ascii64[(l >> 12) & 0x3f];
                    689:     *p++ = ascii64[(l >> 6) & 0x3f];
                    690:     *p++ = ascii64[l & 0x3f];
                    691:     *p = 0;
                    692:
                    693:     return((char *)output);
                    694: }

CVSweb